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Influence of pH and ¢-Carrageenan Concentration on
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The influence of pH and (-carrageenan concentration on the properties of S-lactoglobulin (5-Lg)-
stabilized oil-in-water emulsions was investigated by measuring the particle charge, particle size
distribution, and creaming stability. Emulsions containing droplets stabilized by -Lg were produced
by homogenization, and then, -carrageenan was added. At pH 3, the droplet charge did not change
for -carrageenan concentrations <0.1 wt % but decreased rapidly at high concentrations, while the
mean particle diameter increased slightly as the (-carrageenan concentration was increased. These
results suggest that the interaction between (-carrageenan and f-Lg was weak at pH 3 probably
because some sulfate groups were protonated (pK, = 2). At pH 4 and pH 5, the droplet charge
decreased dramatically as the (-carrageenan concentration was increased from 0 to 0.15 wt %, but
droplet aggregation and creaming occurred in the emulsions, indicating that interfacial complexes
between (-carrageenan and f-Lg could not stabilize the emulsions, probably due to bridging
flocculation. At pH 6, the droplet charge in the primary emulsions was negative and became more
negative as the (-carrageenan concentration was increased. The mean particle diameter was relatively
small at all -carrageenan concentrations, and emulsions were stable to creaming after 1 week of
storage. We propose that carrageenan adsorbed to the droplet surfaces and increased the electrostatic
repulsion between droplets. At pH 7 and pH 8, the droplet charge did not change as the (-carrageenan
concentration was increased, but these emulsions became unstable to creaming above a critical
carrageenan concentration, which was attributed to depletion flocculation.
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INTRODUCTION are surface active ingredients that facilitate the production of

Many food products can be categorized as oil-in-water (0/ Small droplets during homogenization by lowering the interfacial
W) emulsions, which consist of small lipid droplets dispersed tension and improve emulsion stability by forming protective
in an aqueous medium, e.g., milk, cream, beverages, dressingsinembranes around droplets and/or by generating repulsive
dips, sauces, butters, and dessetts3). In addition, many forces between droplet2,(6, 7). A wide variety of different
natural and industrial materials also exist as this type of kinds of synthetic and natural emulsifiers are available for use
emulsion, including petrochemicals, cosmetics, and pharma-in foods, including small molecule surfactants, phospholipids,
ceuticals 4, 5). Emulsion-based products are easily destabilized proteins, and polysaccharides. There is a trend within the food
during processing and storage because they are thermodynamiindustry to replace synthetic emulsifiers with more natural ones,
cally unstable systems. Emulsion destabilization may occur such as proteins and polysaccharides. The most commonly used
through a variety of physicochemical processes, including polysaccharides in food emulsions are gum arabic, modified
gravitational separation, flocculation, coalescence, and Ostwaldstarch, modified cellulose, galactomannans, and pedjn (
ripening (2). Many factors contribute to the destabilization of However, these molecules are not particularly surface active
O/W emulsions during processing and storage, including the ang/or have to be used in relatively large quantities to make
specific type of ingredients present, the way that the emulsion giaple emulsions. In addition, gum arabic is a fairly expensive
was produced, and the environmental conditions that it experi- ingredient whose quality can vary considerably from batch-to-
ences. . . batch, and so, there have been many suggestions in the literature
incE(renauslzl?ﬁerisr 2;%?2%22’;?;%Eiaoeciies'{glélifgg)ss%sﬁiys 0 for its replacement by other polymeric emulsifie& 9) and

) chemically modified polymerslQ, 11). Various milk proteins,
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but the long-term stability of these protein-stabilized emulsions MATERIALS AND METHODS

is highly sensitive to pH, ionic Strgngth, and temperatllllfe ( Materials. The food grade-carrageenan sample was kindly donated
14). It should be r}oted.that protelnsland polysaccharldes ,C,anby FMC BioPolymer (Philadelphia, PA). The manufacturers reported
also be used as thickening agents to improve emulsion stability 4t this sample was in almost pure sodium form with a low amount
via V|SCOS|ty m0d|f|Cat|0n or gelat|0n n the aqueous continuous of contamination from other materia|s$%). The powdereﬂ_Lg was
phase (15). obtained from Davisco Foods International (Lot no. JE 001-1-922, Le
Some food polysaccharides have been shown to improve Sueur, MN). As stated by the suppliers, fhég content of the powder
emulsion properties by forming an interfacial complex with an determined by electrophoresis was 98% (the remainder was mostly
adsorbed protein layer after homogenization. Partial unfolding 9'0Pulins). Other chemicals used in this study were analytical grade
of globular proteins may make them more susceptible to interact and purchased from the Sigma Chemical Co. (St. Louis, MO). Double-
. . R . . distilled water was used to prepare all solutions and emulsions.
with polysacchandes in oil droplgt interfaces than. In aqueous g4 tion Preparation. An emulsifier solution was prepared by
solutions (16). Evidence for b_ovme serum albumin (BSA) dispersing 1 wt %3-Lg in 5 mM phosphate buffer (pH 7), containing
dextran sulfateX7), BSA+ sodium alginate18), and BSA+ 0.04 wt % NaN (as an antibacterial agent) and stirring &h toensure
-carrageenan interactions (19) at the oil—water interface have complete dispersion. Acarrageenan solution was prepared by dispers-
been provided by surface shear rheology, particle electrophoreticing 0.3 wt % powdered-carrageenan in distilled water and stirring for
mobility, and surface tension measurements, respectively. The3 h to ensure complete dispersion. A series-cérrageenan solutions
strength of proteirpolysaccharide interactions at oil droplet with different pH values (3—8) were then prepared by adding NaOH
interfaces depends on the distribution of ionizable groups on ©F HCl- _ ) _
the surface of the protein, the ease of unfolding of the protein’'s ~ Emulsion Preparation. An O/W emulsion was prepared by
native structure, and the backbone flexibility, charge distribution, homogenizing 10 wt % corn oil and 90 wt % aqueous emulsifier

: : . solution (1 wt %p-Lg in 5 mM phosphate buffer, pH 7) at room
and density on the polysaccharidkr{-20). Strong attractive temperature. The oil and emulsifier solution was blended using a high-

interactions between adsorbed Pmte'”,s_ gnd polysaccharlde§peed blender for 2 min (M133/1281-0, Biospec Products, Inc., ESGC,
produce a secondary layer of steric stabilizing polymer around gyitzerland) and passed through a two stage high-pressure value
droplets coated with protein in emulsions. However, the protein- homogenizer three times at 5000 psi (LAB 1000, APV-Gaulin,
coated droplets may be destabilized by bridging or depletion wilmington, MA). The pH of the emulsion was adjusted to values
flocculation when charged polysaccharides are absorbing orranging from 3 to 8 £0.1) using HCI or NaOH solutions. The
nonabsorbing polysaccharides, respectively. Carrageenan inemulsions were then diluted with different ratios of 0.3 wt %
duced bridging flocculation in BSA-stabilized emulsions at a ¢-carrageenan solution and 5 mM phosphate buffer (at the same pH as
certain range ofi-carrageenen concentrations at pH 1) the emulsions) to form a secondary emulsion with a final composition
Protein-stabilized droplets are destabilized by depletion floc- °f 3 Wt % com oil, 0.5 wt %6-Lg, and 0-0.15 wt %-carrageenan at

. . . pH values of 3-8. The primary and secondary emulsions were stored
culation at relatively low concentrations of xanthan guzi)(

. . - : for 24 h at room temperature, and then, their electrical charge and mean
but restabilized at high concentrations due to the formation of hoiicle diameter were measured after dilution with a buffer of the

a gellike network of aggregated drople2f. appropriate pH value. The creaming stability was measured after 1 week
Recently, we have utilized a technology that enabled us to of storage at room temperature without further dilution of the emulsions.

combine the beneficial attributes of different kinds of emulsifiers ~ Particle Size MeasurementsThe prepared emulsions were diluted

to create emulsions with improved long-term stability. At pH to a droplet concentration of approximately 0.006 wt % using buffer

3, an anionic emulsifier (lecithin) was used to form a primary solu_tion to av_oid_ ml_JItipIe scattering_ effects prior to analysis. The

emulsion and then a cationic biopolymer (chitosan) was mixed partlcle S|ze_d|str|but|0n Qf the emulsions was then measured by laser

with it to form a secondary emulsion coated with an emulsifier light scattering (Mastersizer X, Malvern Instruments Ltd., Malvern,

bi | b Thi d Ision had IIU.K.). This instrument finds the particle size distribution that gives
lopolymer membrane. IS secondary emuision had a smally,e pest fit petween the experimental measurements and the predictions

mean droplet size and good long-term stability, after any flocs made using light scattering theory (i.e., Mie theory). A refractive index
formed within it during the mixing process had been disrupted ratio of 1.08 was used by the instrument to calculate the particle size
by the application of mechanical ener@g(24). The secondary distributions. Measurements are reported as the voisugface mean
emulsions had better stability than the primary emulsions againstdiameter:ds; = yn; di¥/y n; di?, wheren; is the number of droplets of
high calcium concentrations, lipid oxidation, thermal processing, diameterd; (2). The particle size measurements are reported as the
and freeze-thaw cycling @5). In this study, we intend to prepare ~ average and standard deviation of measurements made on two freshly
secondary emulsions using a similar approach but using aPrépared samples, with two readings made per sample. _
globular protein (8-Lg) as the emulsifier and a polysaccharide &-Potential Measurements.The prepared emulsions were diluted

' . . o 1o
(-carrageenan) as the biopolymer. Carrageenans are Commonlt a droplet concentration of approximately 0.04 wt % using buffer

d tabili thick d gelli ts i ilk-b olution prior to analysis. Diluted emulsions were then injected into
used as stabilizers, thickeners, and gelling agents In milk-basety, o jeasyrement chamber of a particle electrophoresis instrument (ZEM

products (26). They have a strong electrolyte character due t05003  zetamaster, Malvern Instruments, Worcs., U.K.), and the
their sulfate groups, and there are three major types of ¢ potential was determined by measuring the direction and velocity
carrageenan, which mainly differ in the number of the sulfate that the droplets moved in the applied electric field. Thpotential
groups in the polygalactose backbo2&). 5-Lg will be used measurements are reported as the average and standard deviation of
to produce a primary emulsion containing small oil droplets, measurements made on two freshly prepared samples, with five readings
and then, anionie-carrageenan will be added to the system to made per sample.

produce secondary emulsions containing droplets coated with ~Creaming Stability Measurements.Ten grams of emulsion was
protein—polysaccharide membranes. The specific objective of transferred into a test tube (internal diameter, 15 mm; height, 125 mm),
this study is to investigate the influence of pH arzhrrageenan tightly sealed with a plastic cap, ahd then stored a_lt room temperature.
concentration on the stability of the primary and secondary After storage, a number of emulsions separated into an opaque layer

lsi b . icle size distributi ial (Op) at the top, a turbid (Tu) layer in the middle, and/or a transparent
emulsions by measuring particle size distributigrpotential, (Tr) layer at the bottom. We defined the serum layer to be the sum of

and F!’eami”g: so as to determine the range of eXperime_malthe turbid and transparent layers. The total height of the emulsigh (
conditions where-carrageenan can be used to improve emulsion and the height of the serum layetd) were measured. The extent of

stability by interfacial complexation. creaming was characterized by a creaming ingef00 x (Hg/Hg).
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Figure 1. Dependence of particle electrical charge (C-potential) on pH

and «-carrageenan concentration for secondary emulsions (5 wt % corn pH 2 (28). The strength of the electrostatic interactions between
oil, 0.5 wt % f3-Lg, and 5 mM phosphate buffer). proteins and polysaccharides is dependent on the sign, number,
and distribution of ionizable groups on the molecules at specific
pH values 20, 29). The charged-Lg is unable to bind strongly

. . . . with protonated sulfate groups attached to tkearrageenan

Optical Microscopy. The microstructure of selected emulsions was
determined using optical microscopy (Nikon microscope Eclipse E400, molecules at low pH. Hence, thecarrageenan molecules may
Nikon Corporation, Japan). Emulsions were gently agitated in a glass not have been bound to the droplef[ surfaces or they may have
test tube before analysis to ensure that they were homogeneous. A drog?€en only weakly bound and were displaced when the emulsions
of emulsion was then placed on a microscope slide, covered by a coverwere diluted for thel-potential measurements.
slip, and observed at a magnification of 400An image of the At pH 4, the droplet charge of the secondary emulsions
emulsion was acquired using digital image-processing software (Micro decreased gradually as thearrageenan concentration was
Video Instruments Inc., Avon, MA) and stored on a personal computer. jncreased from 0 to 0.04 wt %, had zero net charge around 0.1

Statistical AnalySiS.EXperimentS were per‘forme_d tWice USing freshly wt % (-carrageenan, and then became |ncreas|ng|y nega“ve'y
prepared sampl_es. Averages and standard deviations were calculategharged at highercarrageenan concentrations. These changes
from these duplicate measurements. suggested thatcarrageenan adsorbed on the surfacg-bfy-
coated droplets due to their opposite net charges. At pH 5 and
pH 6, the droplet charge of the primary emulsions was negative

Influence of pH and ¢-Carrageenan Concentration on and became more negative when #ftarrageenan concentration
Properties of Primary and Secondary Emulsions.Droplet was increased from 0 to 0.15 wt % in the secondary emulsions.
Charge The-potential of the droplets in the primary emulsion The increased negative charge on the droplets at pH 5 and pH
changed fromt-60 to —63 mV as the pH was increased from 6 suggested that there was an electrostatic interaction between
3 to 8 (Figure 1) because the net electrical charge of adsorbed (-carrageenan molecules and oil droplets coated fvithy, even
f-Lg on the surface of the oil droplets changed from positive though they had the same net negative charge. This result can
to negative as the pH was increased from below to above thebe attributed to an electrostatic attraction between anionic
protein’s isoelectric point (IER= 5.2). The net droplet charge (-carrageenan and exposed cationic amino acid residues on the
of the primary emulsion was around zero at pH 5, which was g-Lg molecules. At pH 7 and pH 8, thépotential of the
close to the IEP of the protein. The droplet charge of the droplets in the secondary emulsions did not change as the
secondary emulsion was different from that of the primary -carrageenan concentration was increased, suggesting that there
emulsion at all pH values except pH 7 and pH 8. The trends of was no electrostatic attraction betweerarrageenan molecules
droplet charge vscarrageenan concentration were different for andp-Lg-coated droplets. This can be attributed to the fact that
the emulsions at different pH values. At pH 3, the droplet charge -Lg-coated oil droplets were completely negatively charged
of the secondary emulsions did not change-etrrageenan  at these pH values and not available to interact with anionic
concentrations0.1 wt % but became highly negative at 0.15 (-carrageenan molecules.
wt % ¢-carrageenan. This result suggests thaarrageenan Droplet Aggregation. The mean particle diameters of the
molecules did not adsorb strongly to the surfacg-afy-coated primary emulsions (i.e., 0 wt % carrageenarkigure 2) were
droplets at this pH, presumably because the interaction betweerrelatively small (i3, ~ 0.5 um) at all pH values except pH 5,
-carrageenan molecules agiLg was weak. The highly  where the particles were relatively largef~ 5um). The larger
negative¢-potential measured at 0.15 wt % carrageenan may particle diameter observed at pH 5 suggests that droplet
have been because the light scattering by the anionic polysac-aggregation occurred close to the IEP of the protein (2P
charide molecules dominated that from the cationic emulsion 5.2). Extensive droplet aggregation was observed in the primary
droplets. The reason that only weak interactions occurred emulsions around pH 5 because theg-coated droplets have
betweeni-carrageenan molecules and oil droplets coated with a low net electrical charge near the IEP of the protein, thus
p-Lg at pH 3 is probably because some of the sulfate groups reducing the electrostatic repulsion between the droplets (
on the-carrageenan were protonated at this pH, since Kae p There was extensive droplet aggregation in the secondary
value of the anionic sulfate groups owmarrageenan is around emulsions at pH values below and around the IEP of the protein

The creaming index provided indirect information about the extent of
droplet aggregation in an emulsion.

RESULTS AND DISCUSSION
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was due to the protein—polysaccharide complex, rather than
the emulsion droplets.

At pH 5, the particle diameter of the secondary emulsion
increased rapidly with increasingcarrageenan concentrations
up to 0.02 wt % but decreased gradually as tearrageenan
concentration was increased higher. Extensive droplet aggrega-
tion was observed in the secondary emulsions at pH values
below and around the IEP of the protein because the anionic
(-carrageenan molecules could act as bridges between the
cationic droplet surfaces. Bridging flocculation occurs in protein-
stabilized emulsions when charged polysaccharides are present
at relatively low concentrations (181, 29).

At pH 6, the mean particle diameters of the secondary
emulsions were small over allcarrageenan concentrations.

0 0.04 0.08 0.12 0.16 According to thel-potential datai-carrageenan interacted with
droplets coated witl#-Lg even though they had the same net
negative charge (Figure 1). The droplets are stable to aggrega-
tion at this pH probably because anionic sulfate groups on
-carrageenan bind to cationic groups/#hg, thereby increas-

ing the overall negative charge on the droplets. Thus, the
increase in droplet charge would strengthen the electrostatic
repulsion between the droplets and prevent droplet aggregation.
Particle size measurements indicated no evidence of droplet
aggregation at pH 7 and pH 8 as thearrageenan concentration
was increasedrigure 2). We will discuss this point further in
the next section.

Creaming Stability The creaming stability of the secondary
emulsions stabilized by-Lg—:-carrageenan membranes was
determined by manually measuring the height of the boundaries
separating the different layers formed after 1 week of storage
(Figure 3). Different layers were observed in the emulsion: an
opaque white layer at the top, a turbid layer at the middle or
bottom, and/or a transparent layer at the bottom. The opaque
layer probably consisted primarily of flocculated droplets that
creamed rapidly, whereas the turbid layer probably consisted
of nonflocculated droplets that creamed more slov@§)( The
height of each of these layers was measured and expressed as
a percentage of the height of the whole emulsitale 1). At
(pH 3-5). At pH 3, the particle diameters in the emulsion pH 3, emul.sions became unstable to creaming-ataarageenan
increased gradually as thecarrageenan concentration was concentratlorEO.QSWt.% after 1 week of storage. We ob;erved
increased, with the maximum amount of droplet aggregation transparent particles |n.the serum layer at pH 3, which was
occurring at 0.15 wt %-carrageenan. At pH 4, the mean particle attributed to the formation of |nsolubIﬁ-Lg—L-carraggenan
diameter increased greatlyiatarrageenan concentratiog.08 complexes that were denser. than .water. Thesg particles could
Wt %, with the maximum amount of droplet aggregation clearly be seen using an optical microscope (Figure 4). At pH

. . 4 and pH 5, the primary emulsions were very unstable to
occurring ati-carrageenan concentrations around 6:08. wt creaming (Table 1) because the pH was near the IEB-b
0 . " o :
tf(; ’nvglfﬁecgrrc:g?eﬁgZiii:%;%lgrlgoln)s Avx[hs:'escgr?éganzuttrr]aellza The creaming stability of the secondary emulsion at pH 4 and

. i 4 . pH 5 improved with increasing-carrageenan concentration
mean particle diameters at higkcarrageenan concentrations

~0.08 wt % o had | tand d(Figure 3), which was probably due to the increase in viscosity
(=0. oi-carrageenan concentrations) had large standard ¢ the continuous phase§) and/or bridging flocculation (19,

deviations between samples measurements. Particle size distr|21, 29,30) by the polysaccharides, leading to the formation of
bution measurements indicated that there was a mixture of smally hotwork of aggregated droplets that retards creaming. At pH
and large droplets in the secondary emulsions at higlira- g emulsions were very stable to creaming at-ahrrageenan
geenan concentrations. The small particles were probably concentrations after 1 week of storadégure 3). It is likely
emulsion droplets that had been restabilized by exceasra-  that charged-carrageenan molecules interact with exposed
geenan molecules completely covering their surfaces (19). Thecationic amino acid residue81—34) to create relatively thick
large particles appeared to be transparent and were big enougfand highly charged surfaces, thus reducing interactions between

Creaming, %

Carrageenan concentration, %

Figure 3. Dependence of emulsion creaming stability on pH and
(-carrageenan concentration for secondary emulsions after 1 week of
storage (5 wt % corn oil, 0.5 wt % -Lg, and 5 mM phosphate buffer).

Figure 4. Photomicrographs of emulsions stabilized by S3-Lg—-carrag-
eenan membranes (5 wt % corn oil, 0.5 wt % 3-Lg, 0.08% ¢-carrageenan,
and 5 mM phosphate buffer) at pH 3 (a), 6 (b), 7 (c), and 8 (d).

to observe by eye and optical microscoggg(re 4a). We droplets through electrostatic repulsion. Optical microscopy
postulated that these large particles were the result of aggregashowed that the droplets remained small in the emulsion at pH
tion of nonadsorbeg@-Lg and-carrageenan at highcarrag- 6 (Figure 4b) but that extensive flocculation occurred at pH 7

eenan concentrations. This aggregation was correlated to a rapichnd pH 8 (Figure 4c,d, respectively). It is interesting to note
and large decrease in particle charge at 0.15 wicd#rrageenan  that we did not observe extensive depletion flocculation in the
(Figure 1). It is therefore possible that the high negative particle pH 6 emulsions, but we did in the pH 7 and pH 8 emulsions
charge measured at high carrageenan concentrations at pH 3Figure 4). This may have been because a significant fraction
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Table 1. Appearance of O/W Emulsion Stabilized by 5-Lg and «-Carageenan after 1 Week?
carrageenan concentration (%)

pH 0 0.005 0.01 0.02 0.04 0.08 0.1 0.15

3 Op 1000 1000 1000 100+ 0 100+ 0 12121 14305 943x21
Tu 0 0 0 0 0 87.9+ 1.4 (+++)  857+13(+++) 882+ 19 (+++)
Tr 0 0 0 0 0 0 0 57+0

4 Op 222%13 371x£17 429+25 51.4+0.6 65.7£2.6 714£21 771£25 71427
Tu  639+14  629+21(+) 0 0 0 0 0 0
Tr 139+0.9 0 571+21 486+12 343+19 28627 229+25 28621

5 Op 457+12 514+23 45715 429+23 51427 57116 57.1+19 629+17
Tu 00 00 0+0 0x0 0x0 00 00 0x0
Tr 543+23 382+19 54317 571%21 48.6+3.1 429+12 429+16 371+15

6 Op 100+ 0 100+ 0 100+0 100+0 100+0 100+0 100+ 0 100+0
Tu 0 0 0 0 0 0 0 0
Tr 0 0 0 0 0 0 0 0

7 Op 100+0 100+ 0 100+0 100+0 86+17 114+21 114+16 171+23
Tu 0 0 0 0 914 +£2.1 (+++) 88.6 + 2.4 (++) 88.6+ 1.2 (+) 82925 (+)
Tr 0 0 0 0 0 0 0 0

8 Op 100+0 100+0 100+0 100£0 86+04 114+21 143+03 17.1+14
Tu 0 0 0 0 914 £0.2 (+++) 88.6 + 1.9 (++) 85.7+0.7 (+) 829+ 18 (+)
Tr 0 0 0 0 0 0 0 0

20p, opaque layer; Tu (turbid) + Tr (transparent), serum layer; +, slightly turbid; ++, intermediately turbid; +++, strongly turbid.

Table 2. Appearance of Mixtures of -Lg and ¢-Carrageenan in Buffer System after 1 Week at pH 6, 7, and 8 and Tr = 100, Tu = 0,and P =0
at All -Carrageenan Concentrations?

carrageenan concentration (%)

pH 0 0.005 0.01 0.02 0.04 0.08 0.1 0.15
3 Tr 100+ 0 0 0 0 0 646+13 462+19 40+0.7
Tu 0 100+ 0 (+) 100 £ 0 (++) 92.3+ 2.4 (+++) 84.6 £ 3 (+++) 0 0 0
P 0 0 0 77 15.4 354+15 53.8+3.2 60+ 1.6
4 Tr 95.4+0.2 90.8+1.1 846+15 73.8+0.6 69.2+18 58.5+0.3 538+12 50.8+2.4
Tu 0 0 0 0 0 0 0 0
P 46 9.2 15.4 262+24 308+18 415+25 46.2£35 49.2+0.3
5 Tr 95.4+13 90.9+25 87.1+21 86.2+0.4 708+21 0 0 0
Tu 0 0 0 0 0 80 £ 0.3 (+++) 231x11 283x04
P 46+13 9.1+23 127+05 138+21 29.2+03 20+0.2 76.9+14 71710

aTr, transparent; Tu, turbid; P, precipitated layers in the test tubes; +, slightly turbid; ++, intermediately turbid; +++, strongly turbid.

of the carrageenan added to the emulsions was at the dropleend various-carrageenan concentrations (0—0.15 wt %) and
surface and therefore not free to induce a depletion attractionpH values (3-8). The prepared samples (10 mL) were placed
or because the increased repulsive interactions between then test tubes, and the heights of the boundaries separating the
droplets were sufficient to overcome the depletion attraction. transparent, turbid, and precipitated layers in the test tubes after
At pH 7 and pH 8, the emulsions were stable to creaming at 1 week of storage were measured manually. The data were
low -carrageenan concentration®.02 wt % after 1 week of ~ expressed as a percentage of the total height of the samples in
storage but exhibited extensive creaming at higizarrageenan  the test tubesT(able 2). 5-Lg solutions were transparent at pH
concentrations. The height of the serum layers decreased slightlyyalues of 3, 6, 7, and 8 but were turbid at pH 4 and pH 5,
and the serum layers became less turbidi-aéirrageenan  indicating some protein precipitation. At pH 3, the mixtures of
concentrations higher than 0.04 wt %aple 1). Particle size p-Lg andi-carrageenan in buffer solution produced a turbid layer
measurements did not show any droplet aggregation in theat:-carrageenan concentratiog®.01 wt %, turbid/precipitated
emulsion at pH 7 and pH 8, but observation of the emulsions layers ati-carrageenan concentrations between 0.02 and 0.04
by optical microscopy indicated that the droplets were highly wt %, and clear/precipitated layers at highecarrageenan
flocculated (Figure 4). This suggests that the flocs formed in concentrations. At pH 4 and pH 5, precipitate formatiof-ig
the emulsions were easily disrupted by dilution, which is solutions increased when thearrageenan concentration was
characteristic of depletion flocculatiorB). No change of increased from 0 to 0.15 wt %, whif¢Lg solutions at neutral
droplet charge was observed after mixincarrageenan into the  pH values (6, 7, and 8) did not show any turbid and precipitated
p-Lg-stabilized emulsions at pH 7 and pH 8 (Figure 1), which layers in the presence or absence-oarrageenan. This change
suggests that there was no electrostatic attraction between(from soluble to precipitation) at pH 3 and pH 4 indicates that
-carrageenan molecules afd _g-coated droplets. electrostatic interactions existed betwgelhg and:.-carrageenan
Influence of pH and ¢-Carrageenan Concentration on due to the net opposite charges of the two polymers at those
Interactions of -Lg and ¢-Carrageenan in Aqueous Solution. pH values. During complexation, the net charge of the anionic
To further understand the interactioniefarrageenan molecules  «-carrageenan decreased by gradual attachment of cationic
with droplets coated by-Lg in emulsions, we also examined protein molecules, resulting in reduced solubility and hydro-
interactions betweencarrageenan angtLg in buffer solutions philicity of the resultant complex. The maximum complexation
(i.e., in the absence of oil droplets). A series of solutions were yield usually occurs at pH values where the polymers carry equal
prepared that contained a final concentration of 0.5 wi-¥%g and opposite charges (35). At a high concentrationarra-
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